A Semiotic Systems Approach to **Distributed Knowledge Environments**

Cliff Joslyn

Computer Research and Applications Group (CIC-3) Los Alamos National Laboratory

SRI International

- •Background: Systems Science and Semiotics
- •Principia Cybernetica: Distributed, collaborative self-application of cybernetic principles
- •LANL:
 - –Distributed Knowledge Systems (DKS)
 - -Current research efforts
- Towards robust distributed knowledge environments

Systems Science

- Many meanings to many people:
 - An interdisciplinary approach to engineering and science from the perspective of "information systems"
 - Transdisciplinary study of the abstract organization of phenomena, independent of their substance, type, or scale
 - Search for isomorphisms among systems of different types
 - General theory of modeling
 - General science of complex systems
- History
 - War-time Birth: Early digital computers, feedback control
 - Post-war Growth: Model isomorphisms, computer technology
 - Backlash: Unfulfilled grand promises, postmodern philosophy, cooption
 - Modern Reflections: Complexity science, ALife

Reflections of Systems Science

- Also known as: Cybernetics, General Systems Theory
 - Weiner, Ashby, von Bertallanfy, von Foerster, Boulding, Beer, Klir, Pask. etc.

General precursor to:

- Systems engineering and analysis
- Information theory, operations research
- Connectionism
- Dynamic systems (e.g. Club of Rome)
- Complexity science (e.g. SFI)
- Artificial life, theoretical biology

First transdisciplinary science:

- Work in breadth and depth
- Few bases for consensus (texts)

science servina societ

Encyclopedic

Formal Approaches to General Systems

- Dimensions: The things that can vary; variables indeces; X_i
- State Sets: How these thing can vary (``data types''); $X_i = \{x_{ii}\}$
- System: A multidimensional relation: S f H $_i$ X_i
- Properties: Of dimensions and relations:
 - Cardinalities: Finite, countable, uncountable
 - Orderings: None, partial, ordinal, numerical
 - Boundedness: Bounded, unbounded
 - Relations: Reflexive, symmetric, transitive, etc.
- Projections: consider only some dimensions at a time
- Connection to relational databases
- Most general formulation:
 - Tradeoff of generality and expressibility

science servina sociel

Isomorphic representations: graphs, equations, state machines

An Example

- Time: $X_1 = R$
 - Cardinal, unbounded, total order
 - Timeline
- Subject: X_2 = subject hierarchy
 - Nominal, unbounded, partial order
 - Node in tree
- Degree of association: $X_3 = [0, 1]$
 - Cardinal, bounded, total order
 - Weight on link, slider position
- Record: triple in $X_1 \times X_2 \times X_3$
- Projections, examples:
 - $-X_1, X_2$ ignore weights
 - $-X_1, X_3$ shift in interest over time

science servina societ

Classical Information Systems Theory

- Information as the hypothetical universal concept for scientific unification
- Related Concepts: Order, organization, complexity, structure, form, hierarchy, relations, distinctions, variety, constraint, adaptation, evolution, development
- Classical Measures:
 - Thermodynamic Entropy: Measure of the distance of a physical system from thermodynamic equilibrium
 - **Statistical Entropy:** Measure of the uninformativeness, specificity, or "spread" of a probability distribution: $H(p) = -3_i p_i \log_2(p_i)$
- Manifestations: 2nd Law of Thermodynamics, 10th Theorem (Shannon), Law of Requisite Variety (Ashby), Maximum Entropy Principle (Jaynes)
- Applications: Coding theory, dynamical systems, dissipative structures, biological evolution and organization, genetic structures

Limitations of Classical Information Theory

Evident Limitations:

- Frame-dependence, measurability, conservation, type specificity, probabilistic basis
- **Greatest Concerns:** Information vs. Communication
 - Real information means something, is used to make decisions
 - Structural measures, merely quantitative
 - Shannon: ``These semantic aspects of communication are irrelevant to the engineering problem".
 - The need for the elusive semantic information theory recognized for a long time (Bar-Hillel and Carnap, Minsky, Dretske, Harnad)
 - Denotational semantics (meta-syntactic labeling) necessary but not sufficient
- What are the differences among data, information, and knowledge?

science servina societ

Semiotics

- General theory of representations: signs and symbols
- Origins: Linguistics and humanities (philosophy of language)
 - Text and media analysis
 - Animal call systems
 - Theoretical biology

Concerns:

- Sign typologies
- Digital/analog, symbolic/iconic representations
- Motivation: intrinsic relations of sign to meaning

science servina sociel

Mappings among representational systems, analogy, metaphor, category theory

Results:

- Tokens: creation, transmission, storage, interpretation
- Modeling epistemology
- Emphasis on sources of codes

Semiotic "Dimensions"

Syntax:

- Relations among tokens, production of new tokens
- Usually formal

Semantics:

- Tokens (signs) interpreted by agent as standing-for environment observables
- Measurement, actions

Pragmatics:

- Repercussions of sign interpretations for the agent in the environment
- Purpose: goals, desires
- Ultimate criteria: survival

Purposes of Principia Cybernetica

Primary:

- To develop the theory of Systems Science in general and MST Theory in particular: long-term, distributed, collaborative
- Linkage of form and content: self-application of cybernetic technology to the development of cybernetic principles (echoing Whitehead and Russell)
- To approach the conceptual unification of Systems Science by construction

Secondary:

- To develop methods to build consensus among communities of scholars
- To flexibly represent material in many different forms
- To balance editorial control with public participation to achieve both progress and openness
- To move easily among natural language, formal language, and mathematical notation
- To publish the whole or portions of the system through traditional means
- To provide service to the Systems Science community

science servina sociel

Ideal Environments: Universal Knowledge Systems

- Early visionaries: Vannevar Bush, Doug Engelbart, Ted Nelson
- Universal access
- Universal content
- Unlimited collaborative granularity
- Completely connectivity
- Completely flexible representations
- Maximal human interface
- Active, ``extensible": merger of objects (data) and processes (programs) in a monadic meta-representation

What is Principia Cybernetica?

http://pcp.vub.ac.be

- A long-term, distributed, collaborative, international, scholarly project administered by an Editorial Board: Turchin, Heylighen, Joslyn
- A World Wide Web hypertext corpus for evolutionary cybernetics
- An experimental test-bed for ideas about evolutionary and semantic networks and webs
- An electronic home for Systems Science research and researchers
- An electronic publication allowing contributions by many member of an extended community

Principia Cybernetica Activities

- Philosophy and methods:
 - Reflexive linkage of form to content
 - Distributed, collaborative hypermedia required
 - Graph-theory based representations of semantic information
- 1989: Founding documents
- 1993: Web server: first in Belgium, clickable map, annotations, database generated corpus
- 1995: Early published work in adaptive hypertext
- 1996: Dictionary hosting, republishing (Ashby, Turchin)
- Current: Most authoritative web source for Systems Science
- Throughout:
 - Collaborative community
 - Students, publications, conference presence

science servina sociel

Some Early Node Ideas

LANL Needs in Knowledge Systems

LANL priorities:

- Scientific and engineering knowledge bases:
 - Historical and current
 - Closed and open (Digital Library)
 - Creation, organization of, and retrieval from
 - In interaction with user communities
- Bioinformatics: Genomics data, interacting experimental
- Protection of the information infrastructure
- Scientific approach to understanding these unprecedented new systems

National and global priorities:

- Unprecedented properties: combination of computation, storage, and communication
- Potential to revolutionize the way society is organized
- Promise to be the transformative technology of the 21st century

A Semiotic Systems View of Distributed Knowledge Systems (DKS)

- Knowledge or information
 - Data (bits on disks). . .
 - Interpreted by an agents (human and/or computational). . .
 - To help make choices, decisions, serve purposes
- DKS Defined:
 - Communities of interpreting agents
 - Interacting with networked information resources
 - Human-computer interaction at the collective level

Human-Computer

Traditional HCI

Agent-Corpus

DKS:Collective HCI

More on a Broad Vision of DKS

- Broad vision for DKS:
 - Decentralized. . .
 - Computer-assisted information environments. . .
 - For the representation and organization of knowledge. . .
 - Involving interactions with and among communities. . .
 - Of users, whether human, non-human, or autonomous computational processes
- Semiotic interaction in virtue of:
 - Syntax: Underlying computational processes
 - Semantics: The meaning of that information to user communities
 - Pragmatics: The use of that information by those communities to aid their stability, persistence, and survival

LANL Technical Orientation

- Organization for retrieval and extensibility
 - Beyond digitization
 - Explicit consideration of organization and structure
- *Interaction* with user communities (human and/or computational)
 - As source of information about structure
 - To aid in future retrieval.
- Utilization of *tacit* or *implicit* information
 - Structural connections and hidden patterns
 - User action and interaction
- Representation of *uncertainty-based* information content
 - Subjective (assessed) and objective (measured) sources
 - Probabilistic and non-probabilistic mathematics
- Representation of *semantic* information
 - Information about context, meaning, interpretation
 - At least keywords and meta-data, but beyond

Corpus Structure

Examples: Library Without Walls, Web

LANL Research Efforts

http://www.c3.lanl.gov/cic3/teams/knowledge

- Natural Language Processing
 - NLP representations of semantic relations
 - Mapping to ontological categories and link types
- Recommendation Systems
 - http://www.c3.lanl.gov/~rocha/lww
 - Adaptive systems, uncertainty management
- Ontology Elicitation within Communities of Practice
- Sequence Analysis
 - User traversals, citation chains
 - Word sequences for topic identification
- Network Analysis
- Robust Knowledge Management Environments

science servina societ

Towards Portable, Robust Knowledge Environments

- Recognized need for portable movement of Knowledge Managment resources from one environment to another
- Yet KM systems should and must be specific to particular organizations
- KM Environments:
 - Instantiate in each organization
 - Develop within that organization
 - Different mix of tools and capabilities in each organization
- Purposes:
 - Corpus Management and Representation: Visualization, manipulation and analysis
 - Natural Language: Representation of semantic relations from text
 - Ontological Representation: Facilities for Communities Of Practice
 (COPs) to construct representations of their specific ontological structures.
 - Data Mining: Clustering, sequence analysis, network analysis, and other statistical tools to uncover hidden patterns and structure relations.
 - Hypertext: Authoring and analysis, semantically enhanced

A Knowledge Representation Tool

Necessary components:

- Mathematical systems theory
- Semantic information and relations

Graph theoretical basis:

- Labeled, weighted, directed graphs
- Unlabeled, unweighted, simple graphs supported by default
- Possible: category theory, hypergraphs

Interpretation:

- Nodes as projected states
 - Concepts, data, documents
- Links as semantic relations: labels as link (relation) types

science servina societ

- Categories: Classical (isa, hasa); discursive (support, refute); etc.: arbitrary
- Weights: strength of relation

Link Type Architecture

Recovery of traditional concepts:

- Semantic networks
- Weighted conceptual graphs (Sowa)
- Entailment meshes (Pask)

Data typing mechanism:

- Relational properties:
 - · Reflexivity, transitivity, symmetry
 - Their "antis"
 - Cycles
- Identification: "how transitive is this sub-graph?"
- Construction of closures: "save the transitive closure of this graph"

Multiple inheritance hierarchy:

- Inheritance of properties (e.g. transitivity), and interpretations
- Semantic categories, predicates relating arguments (their nodes)
- Real ontological or semantic relations

Example: NLP Semantic Relations

Davis 1995

Software Engineering Environment

Front End:

- Full drawing/visualization environment for node-arc diagrams
- Rubberbanding: Visio
- Moden software interface standards: a robust GUI.
- Full audit trail (time stamping, authoring, versioning)
- Graphical and textual annotation, etc.

Back Ends:

- Markup Language: Full read/write compatibility
- Database: Relational/OO architecture to record each graph
- Specialized Graph-Theoretical: For transfer to e.g. Matlab

Graph Theory Support

- Subgraph Extraction: by link type, node type, n-neighborhood, or a cutlevel of weight.
- Dual graph construction
- Principle component analysis
- Cycle-finding ("Is this graph cyclic? Show me the cycles. Reduce the cycles to new meta-nodes")
- Chain-finding ("Show the linear chains from A to B".)
- Shortest path General and standard graph statistics

science servina societ

- Metricity calculations
- Planarity optimization
- Clustering
- Root and leaf finding
- Level-finding (when the graph is DAG)
- Morphisms, equality testing, distance measures ("how similar are these graphs? can I twist this one into that one?")

Example: Cyclic Reduction

Example: Multirelations

Conclusions: Questions on Moving Forward

- Connect to current Knowledge Representation work:
 - Development environments for Conceptual Graphs?
 - Better mathematical development: graphs, relational theory, inheritance
- Connect more strongly to current markup standards:
 - DOM, XML, XSchema
 - KQML, KIF
- Development questions:
 - Architecture
 - Tractibility?
 - Development strategy
- LANL support

